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Several solutions for the solitary wave have been attempted since the work of 
Boussinesq in 1871. Of the approximate solutions, most have obtained series ex- 
pansions in terms of wave amplitude, these being taken as far as the third order by 
Grimshaw (1971). Exact integral equations for the surface profile have been 
obtained by Milne-Thomson (1964,1968) and Byatt-Smith (1970), and these have 
been solved numerically. In the present work an  exact operator equation is 
developed for the surface profile of steady water waves. For the case of a solitary 
wave, a form of solution is assumed and coefficients are obtained numerically by 
computer to give a ninth-order solution. This givesresults whichagree closelywith 
exact numerical results for the surface profile, where these are available. The 
ninth-order solution, together with convergence improvement techniques, is used 
to obtain anamplitudeof 0.85for the solitarywave of greatest height and to obtain 
refined approximations to physical quantities associated with the solitary wave, 
including the surface profile, speed of the wave and the drift of fluid particles. 

1. Introduction 
The steady finite amplitude solitary wave was first reported by Russell (1844), 

who made experimental measurements and gave an empirical relationship for the 
wave speed, which was later obtained by Boussinesq (1871) and Rayleigh (1876) 
as part of an overall approximate solution. Since then there have been several 
attempts to improve upon this solution, the first being by McCowan (1891, 1894), 
who also obtained an estimate of the limiting height of the wave. A theory of 
steady finite amplitude waves was given by Korteweg & de Vries (1895), who 
recognized the nature of the approximations involved, named the waves 
‘cnoidal’ and showed that the solitary wave was a particular limiting case, that 
of i nh i t e  wavelength but having a finite effective length. 

Friedrichs ( 1948) produced a systematic approximation procedure using the 
equations of motion; this approach was later to be used by Laitone (1960) for 
a second-order solution of cnoidal and solitary waves and by Grimshaw (1971), 
who obtained a third-order solitary wave solution. Such a solution had previously 
been obtained by Hunt (1955); this, however, did not have a uniformly con- 
vergent expansion in the expression for the profile; higher order terms dominated 
the solution far from the crest. 

In  1954, Benjamin & Lighthill clarified the subject by showing the relevance 
of physical flow parameters and how a systematic approximation procedure based 
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on a stream function expansion could be used. Hunt (1 955) obtained the solution 
mentioned above by extending a method of Levi-Civita. Finally, another 
approximate solution was obtained by Long (1956), who gave a fifth-order 
expression for the wave speed. 

All the approaches described above are approximations; an exact integral 
equation for the solitary wave was obtained by Milne-Thomson (1964, 1968). 
A more general study was made by Byatt-Smith (1970), who obtained an exact 
integro-differential equation for steady surface waves and produced numerical 
solutions for the solitary wave. Strelkoff (1971) used the same approach and 
obtained 0.85 for the amplitude of the solitary wave of greatest height. Although 
these methods were exact, explicit solutions could not be obtained, and the 
equations for the surface profile had to be solved numerically. No other physical 
quantities were calculated. 

The present method follows the procedure of Benjamin & Lighthill, carrying 
their work to a higher order of accuracy. An exact operator equation, which is 
a differential equation of infinite order, is produced and this is truncated to yield 
a differential equation for the free surface of cnoidal waves. A systematic expan- 
sion procedure is introduced for the particular case of the solitary wave; from this 
a uniformly valid third-order solution is obtained analytically. Using a computer 
to expand and manipulate the operators, a ninth-order solitary wave solution is 
obtained, of which the first three terms agree with the analytic third-order 
solution. 

This ninth-order solution, when transformed using convergence improvement 
techniques, is seen to give accurate results for solitary waves of finite amplitude 
and gives expressions for other physical quantities of the wave, namely fluid 
velocities and drift. 

2. Exact operator equation 
We consider steady two-dimensional flow, in a plane (x, y), of a homogeneous 

irrotational incompressible fluid over a horizontal bottom, with gravity acting 
in the -y  direction. The wave train set up is stationary in the x, y plane, with 
fluid velocity components u and v respectively; the co-ordinate origin is at a point 
on the rigid bottom with x in the direction of flow. 

Three physical parameters can be defined which are characteristic of the wave 
train and which completely define it: the volume flow rate per unit span Q ,  the 
energy per unit mass R, and the force plus momentum flux divided by density 
per unit span, S. In  a wave train without friction or other losses, all three are 
constant. By definition 

(1) 
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where p(x,  y) is the pressure, p is the fluid density and g is the gravitational 
acceleration. Substituting (2) into (3) and integrating, we have 

S-Rr)+&g?p = &J-;(u.-v.)ay. (4) 

Now we have two equations, (1) and (4), connecting the three invariants Q ,  R 
and S with the surface elevation Y,I and the velocity components u and v. The 
flow is irrotational and incompressible, hence a complex function w exists which 
is analytic in z and is defined by 

w(z)  = $i5 + i+, (5  a)  
where z = x+iy, (5  b )  

aw a$ a$ - =-+<- 
ax ax ax 

a$ .a4 
aY aY 

2- = -- 

= U-%V.  

We can rewrite (1) and (4) in terms of the complex variables defined in (5): 

Equation ( 6 a )  follows by definition of w ;  ( 6 b )  is the equivalent of the Blasius 
theorem for the force on a body immersed in an incompressible irrotational fluid; 
the term on the right-hand side is the contribution to the flow force of the inertia 
effects. 

Now we can assume a definite form for w such that the following two conditions 
are satisfied. (i) w(x) is analytic. (ii) The velocity is horizontal on the bottom, 
i.e. for x real, dw1d.z is real. Such a function is given by 

aw - = ei@zc(x, O ) ,  ax 
where we have operator 

and an  operand u(x,  0) which is a function of x alone and which represents the 
velocity along the botton. Substituting (7) and the similar relationship between 
(dw/d~)~  and u2(x, 0) into (6) ,  we have a pair of nonlinear operator equations in 
ufx, 0) and r)(x): Q = [sin @I [ I ~ x ,  O)l ,  

S - Ry + +gyz = i[sinyD] [Iu2(x, O ) ] ,  
(8 a )  
(8 b)  

where I is an integral operator: DnI = Dn-l. We can invert (8a) to give 

17-2 
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This is substituted into (8 b )  to give the symbolic operator equation for the free 
surface which is an infinite order differential equation in 7: 

8 - Ry + Bg72 = ~Q2[sinyD] I[(TD/sin 70) ( l/7)I2. (10) 

3. Expansion of operator equation 
We expand the symbolic expressions in (10): 

r3 r5 sin yD = 7.D- - D3 + - 0 5 -  f D7 + O(vD), 
3! 5 !  7!  

7 D  = 1 + - P  1+-D2 1 + - 0 2 +  ... -f D4+ ...) T D  72 3! ( :; ( :1 ) 5 !  

- D4 1 + - 0 2  + .. .) +$ D6 ( 1  + . . .) + 0(7*). (1  1 b)  5!  ( :; 
These expressions are substituted into ( 10) and the necessary differentiations 
performed. At this stage we are forced to truncate the infinite operators at the 
stage of expansion shown in (1  l), thereby introducing the first approximations 
into the analysis. We have three dimensions which characterize the wave train: 
the wave amplitude a, representative depth h and a measure of the horizontal 
extent of each wave, e, which for periodic waves is the wavelength. After the 
substitution of (1  1)  into (10) and subsequent truncation, we have the equation 
for the free surface 

287 - 2 ~ 7 2  + g73 + p( - 1 + q ( 7 )  + ~ ~ ( 7 )  + ~ ~ ( 7 ) )  = 0 ( ~ 3 h 3 p ) ,  (12 a)  
where Dl(7) = w2, (12b) 

(1.24 D2(7) = w( 7 7 7  -727"2+ 27f27" - 1%f4), 
03(7) = &x(2T473v - 27479,+v+ 7 7  4 "'2 1. ( 1 2 4  

1 2 2 ' 111 

The differential terms have been grouped according to order; the equation 
represents the contortions which the surface must undergo in order to keep 
a balance between the velocity on the surface required by energy considerations 
and that required to maintain irrotationality and incompressibility within the 
flow. We now have a differential equation, simply an extension of that obtained 
by Benjamin & Lighthill, which describes the free surface in terms of the three 
basic parameters of the flow, Q, R and X. 

If the free surface is horizontal, all the differential terms disappear and we 
have a cubic equation in 7, giving three possible depths for given Q,  R and S. 
Benjamin & Lighthill have shown that the smallest root is impossible, leaving 
the two alternative depths known in channel flow theory. 

The first differential term Dl(7) was included by Benjamin & Lighthill, who 
deduced from it the equations for cnoidal waves. This order of accuracy requires 
that D2(7), whose value they gave in a footnote, satisfies D2(7) < 1, or 

a2h2/e4 = (a/h)2(h/e)4 < 1. 

Similarly, if we include the second differential term D2(7) we have the requirement 
that @/W2 @/els < 1 
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and finally, if we include D3(r),  
( ~ / h ) ~  (h/e)s < 1. 

For all orders of approximation we can see that the standard of accuracy requires 
that the amplitude be small and the water shallow. 

The criteria set out above apply to all finite amplitude waves; we can show 
that they can be put in different form for the solitary wave. Ursell(l953) gives, 
for the solitary wave, ae2/h3 - 1. Substituting this into the above conditions, we 
have 

respectively, for each order of approximation for the solitary wave. 

< 1, (a/h)5 4 1, (a /W 4 1 

4. Third-order solitary wave solution 
4.1. Expansion scheme 

Solitary waves are possible when we have a uniform flow for which the Froude 
number is greater than unity, i.e. U > (gh)+, where U is the velocity of the 
uniform stream. In this case, 

Q = Uh, (13 a)  
R = +Uz+gh, (13 b)  
S = U2h++gh2 (13 c) 

and we define the Froude number F as 

F = U/(gh)*. 

Now we non-dimensionalize by defining r* = q/h, x* = x/h and suppress the 
asterisks. We can write (12a) for the solitary wave as 

73 - ( ~ 2  + 2) 7 2  + (2172 + 1 7 + ~ 2 (  - 1 + D l(r) + D 2 ( r )  +O3(7)) = O(€'), (14) 

where 6 = a/h. We have a one-parameter family of solutions in P; we use an 
expansion scheme in terms of the non-dimensional amplitude and strain the x 
co-ordinate, following the method of Lighthill (1949), to obtain a uniformly 
convergent solution. Perturbing about the uniform stream of critical depth, we 

(15a) have 7(ax)  = 1 + €71 + €272 + €373 + €4Y4 + "5r5 + 0 ( € 6 ) ,  

F2 = 1 + €Fl + €2F2 + €3F3 + €4F4 + €5F5 + 0 ( € 6 ) ,  

a2 = €al + e2a2 + e3a3 + e4a4 + e5a5 + O(e6). 
(15b) 
(154 

The expansions (15) are substituted into (14). We find that all terms in eo, e1 and e2 
drop out, as do all fourth- and fifth-order constants and functions: F4, a4, r4, 
F5, a5, r5. Grouping all the remaining terms into coefficients of 8, e4 and c5, each 
of which must be satisfied individually, we have the following three equations, 
where primes refer to differentiation with respect to ax: 



4.2. Solution 
We seek solutions of the equations (16) which are all uniformly valid such that 
no term dominates the solution, especially for large x, so that the ratio of higher 
order terms to lower order terms remains bounded as 1x1 +a. Equation (lea) 
can be solved using the definition 7 = 1 + e when 7‘ = 0. Thus we find that 

Fl = 1, a1 = 2, (17% b)  
rl = sech2a(x-x,), (17c) 

where xo is an arbitrary constant. We set the co-ordinate origin under the crest 
such that xo = 0. The equations (17) represent the Boussinesq solution. 

Now we substitute these first-order solutions into (16 b) .  Using the requirement 
that ~ ~ ( 0 )  = 0, we have 

However, we have a family of solutions for r2, with a2 as parameter. In  general, 
these solutions contain terms in ax sech2 ax. tanh ax, which are symmetric in x 
but will swamp the other terms as 1x1 -too. As explained above we seek only 
solutions of uniform validity and, setting the coefficients of the above terms to 

a2 = -is, zero, we can solve to obtain 

This is the result obtained by Laitone (1960). We can repeat the above procedure 
and substitute the solution (18) into (16c). By using the same requirements of 
uniform validity we obtain 

p --L. (18a)  2 -  2 0  

(18 b)  
(18c) 

15 

r2 = - 3 sech2 ax. tanh2 ax. 

(19a, b)  
(19 4 

This is the third-order solution obtained by Grimshaw (1971). We can write the 
third-order solution for the solitary wave as 

(20 a) 

(20 b )  
(20 c )  

F3 = -A, a3 = f ,  

q3 = sech2 ax. tanh2 ax - +# sech4 ax. tanh2 ax. 

7 = 1 + €52 - ge2s2t2 + e3(&2t2 - 101 4 2 80 s t ) + 0(g4) ,  

P 2  = 1 + ~ - & + 9 - & ~ 3 + 0 ( ~ ? ) ,  

a = (&)* (1 - Qe + *2) + O(& 
where s = sech ax, t = tanh ax. We substitute (20a) back into (9) and (7) to obtain 
the expressions for the velocity at any point: 

u/(gh)t = 1 + +€ - h e 2  + &€3 - €82 + .2[ - $82 + 84 + y2( 952  - Es4 4 )I 
+ S [ d  3 1 9  2+L&-p+y2( 5 -#s2-+..&++@) 

+ ~ 4 ( - j p + g s 4 - + 3 6 ) 1 + 0 ( ~ 4 ) ,  p o d )  
~/(gh)B = ( 3 ~ ) t y t {  - €82 + @[@2 + 284 + y2(+s2 - gs4)] 

+ 63[&9+2 - &34 - A$@ + y2( - .L532 - $54 + y.66) 
6 4 0  16 

+y4( -&s2++s4-3s6)]}+ O(&). (20e) 
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These are the expressions obtained by Grimshaw, except for an error of his in 
the signs of the e3 component of v. We can substitute these into (2) to obtain an 
expression for the pressure at any point: 

p/pgh = 1 - y + GS’ + e2[$s2 - #s4 + y2( - 8s2 +$+)I 
+ € 3 ~  - i s z  2 - -s ;; 4+ys6+y2(&2+yS4-*6) 

+ y4(9sa  - s S 4  +as 6 1 6  16’ )i+0(e4)* (‘Of) 
4.3. Fluid drift due to passage of solitary wave 

Price (1971) has calculated the movement of fluid particles on the channel bottom 
due to the passage of a solitary wave, correct to the second order. This can be 
extended to the third order using Grimshaw’s results, and at the same time we 
shall extend the theory to give the drift on any streamline. 

In  this section we consider the unsteady case of a solitary wave passing through 
a stationary fluid in a stationary co-ordinate frame (x*,  y *). The wave propagates 
in the negative x* direction at speed U and has all the physical quantities defined 
above in a co-ordinate frame (x ,  y )  moving with the wave; t is the time taken for 
a particle to reach (x ,  y), starting from x = 0 at t = 0, that is, from under the crest 
of the wave. We can thus write 

ax 
t=/oi i7E3, 

properly tp  = 1%- ax 

where u(x ,  y )  is the horizontal velocity of a particle in the moving frame (x, y) .  
y is no longer an independent variable, however, but varies with x so as to 
describe the streamline along which the particle moves. Thus we can write more 

0 u(x,@p)’ 
where p refers to a particular fluid particle. 

The displacement of the crest in time t is - Ut, hence 

x; = xp  - u t p  

where x; is the distance moved by a particle p in fixed co-ordinates, and will be 
negative because the particle moves upstream. As the wave moves to infinity, 
x; approaches a limit which is half the total drift because the other half of the 
drift has already occurred by the time the wave crest reaches x* = 0. Thus we 
can write, because the wave is symmetrical, 

We can suppress the negative sign, remembering that drift always occurs in 
the direction of propagation of the wave, and define S(@) to be the drift on a 
streamline 9 due to the passage of a solitary wave : 
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We now evaluate this drift using the third-order expression for velocity. First, 
we need to know the elevation of any streamline at any point x; to find this we 
integrate (20d)  with respect to y to give +) and invert the equation to obtain the 
elevation of any streamline + : 

y(x, $) = @ + E$S2 + €2$3( - $2 + 2s4) 

+ €3[( - +$ + 2$3 + &$5) s2 + (&$ - 431-$3 - &$5) s4 

+ (+$ + +p + +95) 861 + o(64). (23) 

For $ = 1, this recovers the equation for the free surface, ( 2 0 ~ ) .  Now we substi- 
tute this into (204  and invert the equation to give 

0) 

S($) = 1 (€82 + €2[ - $32 + $2( - a s 2  2 +s  4s )I 
--m + €3[ - +s2 - 684  + $6 + $2(+s2 - S S 4  + g!S6)]} dx 

= 2(+€)S (1 + $€ + €2( - + &P)) + O(&. (24) 

This gives Price's second-order result for the bottom drift and also shows that to 
second order the drift is constant throughout the fluid. The third-order term, 
however, gives a large correction to Price's result and brings it nearer to his 
alternative calculation based on Lenau's result for the wave of greatest height. 
This third-order term has a coefficient of - 525119600 for the bottom drift, while 
for the surface it has a value of + 242919600. Therefore, surface drift is consider- 
ably larger than the bottom drift, as we might expect. The total volume of drift V 
can be obtained by integrating (24): 

because the stream has unit depth. Thus, 

We can relate this quantity to the volume enclosed under the solitary wave by 
considering the conservation equation for volume in stationary co-ordinates 
(x*7 Y *) aQ ar -+- = 0. ax* at 

If Q and r j  are functions of x alone, where x = x* + Ut,  we can integrate the equa- 
tion to give 

J:m Q d t  = J w  ( q ( x ) -  1)dx. 
--m 

The quantity on the left-hand side is defined to be the drift volume, thus we have 

J -00 

That is, the drift volume (the mean drift) is equal to the volume under the 
solitary wave. If we substitute our expression for 7, equation (20a), into (26), 
we find that we recover (25), thus providing a check on the result. 
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5. Ninth-order solitary wave solution 

wave 
We have the governing exact operator equation (lo), rewritten for the solitary 

( 2 7 )  72-r(F2+ 2 )  + ( 2 P +  1) = P . Q ( v ) ,  

where Q(q) is the operator [sin@] I[(yD/sinyD) (1/7)]2. From the solutions of 
Boussinesq, Laitone and Grimshaw, it appears reasonable to express all solutions 
for the solitary wave profile in a series, each term of which is proportional to 
a product of some power of the amplitude and a power of sech2 ax. That is, 

where the aij constitute an array of unknown coefficients. We see that in ( 2 7 )  and 
(28) we have three parameters, two of which, F2 and a, are expressible in an as yet 
unknown series in terms of the third, the amplitude B .  

If we replace the assumed form of solution (28) by 8 series in which a2 is the 
expansion parameter, we see that all operations on 7 of addition, multiplication, 
inversion and differentiation of even order exhibit closure to give a series of 
similar form. Thus we write 

m i  

is1 j=1 
7 = 1 + C C bija2isech2iax, (29) 

where b, is an as yet undetermined coefficient array. We also simplify ( 2 7 )  by 
solving for 7: 

(30) 7 = 1 + i F 2 - -  iF2[1 + (4 /F2)  (B(7) - I)]&. 

Now, we substitute Stokes's exact result (Lamb 1932, p. 425) for F2 

P2 = tan2a/2a, (31) 

which can be expanded as a series in a2. Thus we rewrite (30)  as 

If we substitute (29) into this equation we can solve for the unknown coefi- 
cients b, by equating terms in each power of a2 and each power of sech2 ax.This 
was done on a computer as far as the ninth order, i.e. al*. The limitation to this 
order was necessary to keep computation time within reasonable bounds. 

With the coefficients b, calculated, substituting x = 0 gives a series expression 
for B in terms of a2, which can be subsequently reversed and substituted into ( 3  1). 
By substituting the results into (9) and ( 7 ) ,  ninth-order expressions for the 
velocity at any point in the fluid are obtained, each containing 285 coefficients. 
These are then used to calculate expansions for the surface, mean and bottom 
drift. Also, by substituting into (29), the expansion for the wave profile is 
obtained. Because of the large amount of labour involved, these operations were 
performed by computer. 
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The resulting series, for wave speed, wave profile and drift (bottom, surface and 
mean), are shown in table 1, which gives all coefficients correct to six figures for 
the expansions in terms of E, the wave amplitude. 

Shanks (1955) has shown how some divergent and slowly convergent series 
may be transformed so as to converge very rapidly to a limit. This is done by 
repeated use of the transform 

where e,(Sj) is the ith transform of the sum of the first j terms of a sequence, and 
where e,(Sj) = Sj for allj. 

These transforms were applied numerically to the series shown in table 1. 
Results are shown and discussed in the next section. 

6. Results 
In  table 1 we see that the coefficients in the expansion for P2, the non- 

dimensional wave speed squared, are all negative after the first, and decrease in 
magnitude until the eighth-order term, at which a small oscillation in magnitude 
begins. We may notice that the coefficients tgree with Long’s fifth-order result, 
In  figure 1 the results of this expansion are plotted for the different orders of 
approximation from one to nine, as well as the results obtained by applying a 
Shanks transform to the complete ninth-order solution. This differed from the 
transformed seventh-order solution by a minute amount, indicating that the 
transformed solutions have converged. 

Each curve isplottedas far as theline F2 = 26, which, to satisfy the energyequa- 
tion on the free surface, corresponds to the wave having zero velocity at the crest: 
the wave of greatest height. The point at which the transformed curve crosses 
this line has E = 0.85, B2 = 1.70 (P = 1-30); these then, are the values of ampli- 
tude and wave speed for the solitary wave of greatest height. This is comparable 
with an amplitude of 0.83 as obtained by McCowan (1 894) and Lenau (1 966), and 
the recent result of Strelkoff (1971), who obtained 0.85. Further support for the 
result of the present work is given by the fact that the curve of F2 as a function 
of E has a maximum at E = 0.85; this is what we expect if the rounded crest is to 
‘snap through’ to become the c x e d  -.- crest of the highest wave, at which an 
increase in amplitude occurs for an infinitesimal increase in wave speed. 

The expansion for the straining parameter a agrees with Grimshaw’s third- 
order result. Beyond the third term it continues to be oscillatory; this may lead 
to rather inaccurate results for large amplitude waves, as can be seen in figure 2. 
For this type of divergence, the Shanks transform appears to give particularly 
powerful results; the transform of the complete nine terms is shown on figure 2 
as well - the usefulness of the transform is immediately apparent. 

If we are to examine the actual wave profiles, exact results are available for 
comparison, including those obtained numerically by Byatt-Smith (1970). 
Figure 3 shows the results of the present work compared with three waves com- 
puted by him. The ninth-order (untransformed) solution is perfectly adequate 
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FIQURE I. Wave speed. Solutions from fist- to ninth-order and the transformed 

ninth-order solution are shown. 

for wave amplitudes up to 0.5, but for higher waves the incorrect value of a, as 
shown by figure 2, gives a significantly greater rate of decay than the exact 
numerical results. 

For the transformed ninth-order solution, as plotted on figure 3, the trans- 
formed value of the straining parameter a was computed, and for each value of x, 
the coefficients in the expression for the wave height at  that point were calculated. 
Because the coefficients of each term (table 1) were often quite large, in some 
parts of the wave the sequence exhibited certain irregularities, thus poor results 
were obtained by a full e,(S,) transformation. However, the seventh-, eighth- and 
ninth-order solutions were close together for all x and exhibited the same 
behaviour throughout, so a single transform was used on these three values, that 
is e,(S,), to obtain the plotted curves. These agree very closely with the exact 
results over almost the whole range of amplitudes. For an amplitude of 0.752, 
however, some differences are apparent; these grow very quickly with amplitude 
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FIGURE 2. Straining parameter a. Solutions from first- to  ninth-order and the transformed 
ninth-order solution are shown. Each CUNB is plotted up to the amplitude for which the 
velocity at the crest is zero. 

at this height, until for the maximum amplitude of 0.85, the wave obtained bears 
no resemblance to the sharp-crested wave of greatest height. 

Figure 4 shows the results for the expressions for fluid particle drift due to the 
passage of a solitary wave. From table 1 we see that the coefficients after the 
second-order term are all negative for the bottom and mean drift and dl positive 
for the surface drift. Because of this we can see how Price’s second-order drift 
result differed so markedly from the bottom drift computed by him using Lenau’s 
results for the wave of greatest height. In  fact for this wave, the velocity at the 
crest is zero, the fluid is carried along with the wave and the surface drift must be 
infinite. The upward-tending curve of the ninth-order expression indicates this. 
We may note that variation of drift with depth is obtained at third and higher 
orders; second-order theory predicts uniform drift throughout. 

When these results were to be transformed, it was found that each (bottom, 
mean and surface drift) series exhibited certain irregularities, so as to invalidate 
the use of transforms as used above. Hence, no transformed results are presented; 
the curves shown on figure 4 are the ninth-order untransformed solutions. We 
can say, however, that surface drift, and hence the transport of contaminants, 
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FIGURE 3. Comparison of wave proaes 
with those of Byatt-Smith. Verticd 
exaggeration is 2 : 1. ---, ninth-order 
solution; --- , ninth-order solution 
transformed; - , Byatt-Smith. 
(a)  a/h = 0-492. ( b )  a/h = 0.716. (c) 
a/h = 0.752. 
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FIGURE 4. Drift: ---, first-order solution; 

order solution (surface, mean, and bottom drift 
as shown). All curves are plotted as far as the 
line a/h = 0.85, corresponding to the solitary 
wave of greatest height. 0 ,  Price's result for 
this wave (after Lenau). 

, second-order solution; __ , ninth- 

has been shown to be much larger than previously calculated, and in view of the 
relative amount of bottom, mean and surface drift, that this enhanced drift 
would be confined to a region relatively close to the surface. 

7. Concluding remarks 
An exact operator equation has been solved to give numerical coefficients for 

an assumed form of solution to the solitary wave, which were calculated to the 
ninth order. This solution was used to obtain an estimate of the solitary wave of 
greatest height and refined estimates of drift due to solitary waves. The standard 
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of comparison for the wave profiles was the work of Byatt-Smith, the numerical 
solution of an exact integro-differential equation. Results from the present work 
were seen to agree closely, even up to waves of amplitude 0.75; for the wave of 
greatest height, of amplitude 0.85, however, the present method was of no use in 
calculating the profile. 

I wish to thank Prof. Sir James Lighthill for all possible encouragement and 
interest in this work, and the Shell Company of Australia for support in the form 
of a Shell Postgraduate Scholarship. 
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